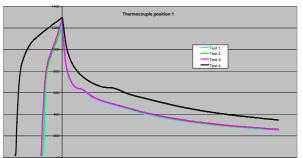


Enhanced manufacturing processes

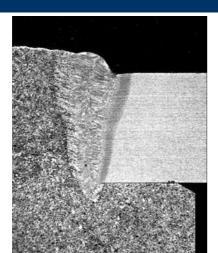
New Welding Processes

Periodic Report

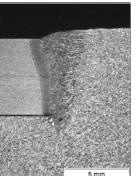

Objectives for the 4th reporting period

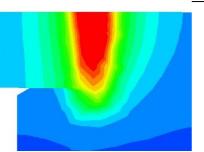
- Conclusion of welding trials and analysis (microstrutural and mechanical) of the following welding processes:
 - Friction, Laser, Electron Beam, Hybrid (Laser+MAG) and Stud
- Technical and economical evaluation of the different welding processes;
- Production of Friction welding samples on: rods [cast Iron (rod end) and chromed bar (rod bar)]; cylinders [cast Iron (tube) and steel (caps end)] different components made by dissimilar combination of materials;
- Development of a thermo-mechanical FE model for the prediction of residual stresses and distortions after a <u>fusion welding process</u>;
- Production of prototypes.

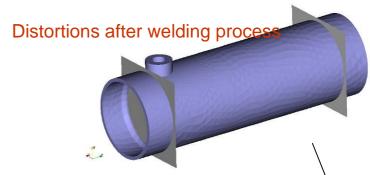
Research/work performed - SCAGLIA



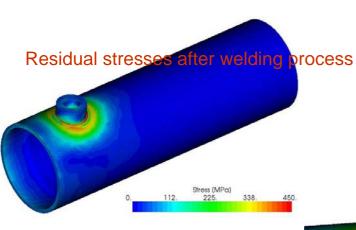
- cast iron / steel
- steel / steel
- **Analysis** of the temperature evolution during:
 - friction and forge and cooling phases;
 - process parameters variation;
- **Determination** of the energy absorbed during the process;
- Characterization of the "flash" geometry produced during the process;
- Production of samples for partners analysis and testing; production of prototypes;
- Analysis of the capability of the friction welding process for joining:
 - commercial cast iron;
 - cylinders and rods made of modified cast iron produced by Roda;
 - rods produced by a cladding process by ISQ;
 - rods produced by an insert method (casting process) by Roda.
- Collection of data for an analysis of the friction welding cost.

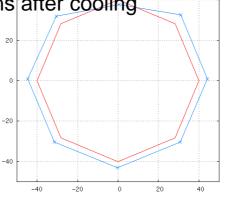

Research/work performed - ISQ

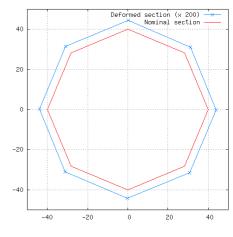

- Metallographic analysis of the weld samples produced by:
 - ISQ in carbon steel with alternative processes
 - SCAGLIA in cast iron, carbon steel, modified cast iron and inserts
- **Design** of parameter's sets to be used by SCAGLIA to avoid cracks in cast iron rod ends;
- Cross comparison of modelling results (CENAERO) with real trial results (SCAGLIA) and literature data for friction welding;
- **Design** of bevels for all the components to be joined by the alternative welding processes;
- Welding trials with Laser, EB, Hybrid and Stud processes;
- Design of a new technique to friction weld cast iron by cladding;
- Production of samples and prototypes on alternative processes;
- Comparative analysis of the studied different processes.



Research/work performed - CENEARO


• Laser welding simulation performed on 2230 Cylinder (using industrial parameters):


- oil port on cylinder and end cap on cylinder welding


• Thermo-mechanical model implemented in Morfeo

• Heat flux parameters derived from macro sections

Computation of residual stresses and distortions after cooling

Relevant Results

Alternative processes demonstrated higher performance for joining hydraulic cylinder components (lower welding times and heat inputs)

Application Welding process	Oil Port	Shell/Cap	Rod/Eye
MAG (reference process)	Weld time 30 s Heat input 33 Wh	Weld time 74 s Heat input 101 Wh	Weld time 87 s Heat input 113 Wh
FRICTION	Not feasible	Weld time 22 s Heat input 60 Wh	Weld time 20 s Heat input 50 Wh
LASER	Weld time 8 s Heat input 6 Wh	Weld time 22 s Heat input 31 Wh	Cracks
EBW	Weld time 12 s Heat input 13 Wh	Weld time 71 s Heat input 52 Wh	Weld time 27 s Heat input 23 Wh
HYBRID	Not feasible	Weld time 20 s Heat input 35 Wh	Cracks
STUD	Weld time 0.75 s Heat input 12 Wh	Not feasible	Not feasible

- Novel process for welding cast iron components developed;
- Determination of real friction welding temperatures and energies involved achieved;
- Good agreement between simulation and experimental data for distortions attained.
- **Production** of prototypes from the main research results *achieved*.

